Electrical conductive CNT-PVA/PC nanocomposites with high tensile elongation.

نویسندگان

  • Eun H Jung
  • Seung I Cha
  • Yong J Jeong
  • Soon H Hong
چکیده

Electrically conductive CNT reinforced polycarbonate matrix nanocomposites with high strain-to-failure were fabricated by inserting polyvinylalcohol as a surface modifier through a melt blending process. The addition of PVA by coating the CNT through a simple ball milling process before melt blending with a polycarbonate matrix resulted in an increased percolation limit as compared to that prepared using uncoated CNTs, while the electrical conductivity was maintained at a similar level of 2 x 10(-2) S/cm. However, tensile elongation was considerably improved by the addition of PVA and remained at 81% even though 5 wt% of the CNTs were added for electrical conductivity, while elongation dropped to 25% when the CNTs were not coated with PVA. The addition of PVA induces homogeneous dispersion of CNTs during the melt blending process and can enhance both electrical conductivity and mechanical durability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermoreversibly Cross-Linked EPM Rubber Nanocomposites with Carbon Nanotubes

Conductive rubber nanocomposites were prepared by dispersing conductive nanotubes (CNT) in thermoreversibly cross-linked ethylene propylene rubbers grafted with furan groups (EPM-g-furan) rubbers. Their features were studied with a strong focus on conductive and mechanical properties relevant for strain-sensor applications. The Diels-Alder chemistry used for thermoreversible cross-linking allow...

متن کامل

Flexible and conductive MXene films and nanocomposites with high capacitance.

MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. Herein, Ti3C2T(x) MXene was mixed with either a...

متن کامل

Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect a...

متن کامل

Poly(vinyl alcohol) Nanocomposites Reinforced with Bamboo Charcoal Nanoparticles: Mineralization Behavior and Characterization

Polyvinyl alcohol (PVA) demonstrates chemical stability and biocompatibility and is widely used in biomedical applications. The porous bamboo charcoal has excellent toxin absorptivity and has been used in blood purification. In this study, bamboo charcoal nanoparticles (BCNPs) were acquired with nano-grinding technology. The PVA and PVA/BCNP nanocomposite membranes were prepared and characteriz...

متن کامل

Enhanced electrical properties of vertically aligned carbon nanotube-epoxy nanocomposites with high packing density

During their synthesis, multi-walled carbon nanotubes can be aligned and impregnated in a polymer matrix to form an electrically conductive and flexible nanocomposite with high backing density. The material exhibits the highest reported electrical conductivity of CNT-epoxy composites (350 S/m). Here, we show how conductive atomic force microscopy can be used to study the electrical transport me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2011